LESSON PLAN (SUMMER-2024)

Discipline: ETC	Semester:6th	
Subject:	No of Days /per	No of Weeks:15
Control System	week class	
	allotted:4	
Week	Class Day	Theory Topics
	1st	1.1 Classification of Control system
1st	2nd	1.2 Open loop system & Closed loop system and its comparison
	3rd	1.3 Effects of Feed back
	4th	1.4 Standard test Signals(Step, Ramp, Parabolic, Impulse Functions)
	1st	1.5 Servomechanism 1.6 Regulators (Regulating systems)
	2nd	2.1 Transfer Function of a system & Impulse response
2nd	3rd	2.2 Properties, Advantages & Disadvantages of Transfer Function
	4th	2.3 Poles & Zeroes of transfer Function,
		2.4 Representation of poles & Zero on the s-plane
	1st	2.5 Simple problems of transfer function of network
24	2nd	2.5 Simple problems of transfer function of network
3rd	3rd	2.5 Simple problems of transfer function of network
	4th	2.5 Simple problems of transfer function of network
	1st	2.5 Simple problems of transfer function of network
4+b	2nd	3.1 Components of Control System
4th	3rd	3.2 Potentiometer
	4th	3.2Synchros, 3.3 DC motors, AC Servomotors
	1st	3.4 Modeling of Electrical Systems(R, L, C, Analogous systems)
Γ+h	2nd	3.4 Modeling of Electrical Systems(R, L, C, Analogous systems)
5th	3rd	4.1 Definition of Basic Elements of a Block Diagram
	4th	4.2 Canonical Form of Closed loop System
	1st	4.3 Rules for Block diagram Reduction,
6th	2nd	4.3 Rules for Block diagram Reduction,
OUI	3rd	4.6 Basic Definition in SFG & properties
	4th	4.7 Mason's Gain formula, 4.8 Steps for solving Signal flow Graph
	1st	4.9 Simple problems in Signal flow graph for network
	2nd	4.9 Simple problems in Signal flow graph for network
7th		5.1 Definition of Time, Stability, steady-state response, accuracy, transient
	3rd	accuracy, sensitivity and robustness.
	4th	5.2 System Time Response
	1st	5.3 Analysis of Steady State Error
8th	2nd	5.4 Types of Input & Steady state Error(Step ,Ramp, Parabolic)
Otti	3rd	5.5 Parameters of first order system & second-order systems
	4th	5.5 Parameters of first order system & second-order systems
	1st	5.6 Derivation of time response Specification (Delay time, Rise time)
	2nd	5.6 Derivation of time response Specification (Peak time, Setting time, Peak over
9th	ZIIU	shoot)
501	3rd	
		6.1 Effect of parameter variation in Open loop System & Closed loop Systems
	4th	6.2 Introduction to Basic control Action
	1st	Basic modes of feedback control: proportional, integral and derivative
10th	2nd	6.3 Effect of feedback on overall gain, Stability
	3rd	6.4 Realization of Controllers(P, PI) with OPAMP
	4th	6.4 Realization of Controllers (PD,PID) with OPAMP
11th	1st	7.1 Effect of location of poles on stability
	2nd	7.2 Routh Hurwitz stability criterion.
	3rd	7.3 Steps for Root locus method
	4th	7.4 Root locus method of design(Simple problem)

12th -	1st	7.4 Root locus method of design(Simple problem)
	2nd	7.4 Root locus method of design(Simple problem)
	3rd	7.4 Root locus method of design(Simple problem)
	4th	7.4 Root locus method of design(Simple problem)
	1st	8.1 Frequency response ,Relationship between time & frequency response
12+h	2nd	8.2 Methods of Frequency response, 8.3 Polar plots & steps for polar plot
13th	3rd	8.4 Bodes plot & steps for Bode plots
	4th	8.5 Stability in frequency domain, Gain Margin& Phase margin
	1st	8.6 Nyquist plots. Nyquist stability criterion.
4.446	2nd	8.7 Simple problems as above
14th	3rd	8.7 Simple problems as above
	4th	9.1 Concepts of state, state variable, state model,
	1st	9.1 Concepts of state, state variable, state model,
1 C +b	2nd	9.2 state models for linear continuous time functions(Simple)
15th -	3rd	9.2 state models for linear continuous time functions(Simple)
	4th	9.2 state models for linear continuous time functions(Simple)

Dissiplies	Comestan All	LESSON PLAN (SUMMER-2024)
Discipline:IT	Semester: 4th	Name of the Teaching Faculty: P BHAWANI
Subject:	No of Days /per	Semister from date: 16/01/2024 to 26/04/2024
Microprocessor &	week class	No of weeks: 15
Microcontroller	allotted: 5	
Week	Class Day	Theory Topics
	1st	Unit-1:Microprocessor (Architecture and Programming-8085-8-bit) (15)
		1.1 Introduction to Microprocessor and Microcomputer & distinguish between them.
1st	2nd	1.2 Concept of Address bus, Data bus, Control bus & System Bus
	3rd	1.3 General Bus structure Block diagram.
	4th	1.4 Basic Architecture of 8085 (8 bit) Microprocessor
	5th	1.4 Basic Architecture of 8085 (8 bit) Microprocessor
	1st	1.4 Basic Architecture of 8085 (8 bit) Microprocessor
	2nd	1.5 Signal Description (Pin diagram) of 8085 Microprocessor
2nd	3rd	1.5 Signal Description (Pin diagram) of 8085 Microprocessor
	4th	1.5 Signal Description (Pin diagram) of 8085 Microprocessor
	5th	1.6 Register Organizations, Distinguish between SPR & GPR
	1st	Timing & Control Module
	2nd	1.7 Stack, Stack pointer & Stack top.
3rd	3rd	1.7 Stack, Stack pointer &Stack top.
	4th	1.8 Interrupts:-8085 Interrupts, Masking of Interrupt(SIM,RIM)
	5th	1.8 Interrupts:-8085 Interrupts, Masking of Interrupt(SIM,RIM)
	4-4	Unit-2: Instruction Set and Assembly Language Programming (15)
	1st	2.1 Addressing data & Differentiate between one-byte, two-byte &three-byte instructions with examples.
	2nd	2.2 Addressing modes in instructions with suitable examples.
4th	3rd	2.2 Addressing modes in instructions with suitable examples. 2.2 Addressing modes in instructions with suitable examples.
		2.3 Instruction Set of 8085(Data Transfer, Arithmetic, Logical, Branching, Stack& I/O ,
	4th	Machine Control)
	5+h	2.3 Instruction Set of 8085(Data Transfer, Arithmetic, Logical, Branching, Stack& I/O,
	5th	Machine Control)
	1st	2.4 Simple Assembly Language Programming of 8085 2.4.1 Simple Addition & Subtraction
		2.4 Simple Assembly Language Programming of 8085 2.4.1 Simple Addition & Subtraction
5th	2nd	2.4 Simple Assembly Language Programming of 8085 2.4.1 Simple Addition & Subtraction
Jui	3rd	2.4.2 Logic Operations (AND, OR, Complement 1's & 2's) & Masking of bits
	4th	2.4.3 Counters & Time delay (Single Register, Register Pair, More than Two Register)
	5th	2.4.4 Looping, Counting & Indexing (Call/JMP etc).
	1st	2.4.5 Stack & Subroutine programes.
	2nd	2.4.6 Code conversion, BCD Arithmetic & 16 Bit data Operation, Block Transfer.
6th	3rd	2.4.7 Compare between two numbers
oui		· · · · · · · · · · · · · · · · · · ·
	4th	2.4.8 Array Handling (Largest number & smallest number in the array)
	5th	2.5 Memory & I/O Addressing, Unit-3: TIMING DIAGRAMS. (8)
	1.0+	3.1 Define opcode, operand, T-State, Fetch cycle, Machine Cycle, Instruction cycle & discuss
	1st	the concept of timing diagram.
	2nd	3.1 Define opcode, operand, T-State, Fetch cycle, Machine Cycle, Instruction cycle & discuss
7th		the concept of timing diagram.
	3rd	
	SIU	3.2 Draw timing diagram for memory read, memory write, I/O read, I/O write machine cycle.
	4th	3.2 Draw timing diagram for memory read, memory write,
	5th	3.2 Draw timing diagram for I/O read, I/O write machine cycle.
	1st	3.3 Draw a neat sketch for the timing diagram for 8085 instruction MOV instruction).

İ		I
8th	2nd	3.3 Draw a neat sketch for the timing diagram for 8085 instruction MVI instruction).
	3rd	3.3 Draw a neat sketch for the timing diagram for 8085 instruction LDA instruction.
	4th	Unit-4 Microprocessor Based System Development Aids (10) 4.1 Concept of interfacing
	5th	4.2 Define Mapping & Data transfer mechanisms - Memory mapping & I/O Mapping
	1st	4.3 Concept of Memory Interfacing:- Interfacing EPROM & RAM Memories
9th	2nd	4.4 Concept of Address decoding for I/O devices
	3rd	4.5 Programmable Peripheral Interface: 8255
	4th	4.5 Programmable Peripheral Interface: 8255
	5th	4.6 ADC & DAC with Interfacing.
	1st	4.6 ADC & DAC with Interfacing.
	2nd	4.7 Interfacing Seven Segment Displays
10th	3rd	4.8 Generate square waves on all lines of 8255
1041	4th	4.9 Design Interface a traffic light control system using 8255.
	5th	4.9 Design Interface a traffic light control system using 8255.
	1st	4.10 Design interface for stepper motor control using 8255.
	2nd	4.11 Basic concept of other Interfacing DMA controller, USART
	ZIIU	Unit-5 Microprocessor (Architecture and Programming-8086-16 bit) (12)
11th	3rd	5.1 Register Organisation of 8086
	4th	5.2 Internal architecture of 8086
	5th	5.2 Internal architecture of 8086
	1st	5.3 Signal Descriptionof 8086
	2nd	5.3 Signal Description of 8086
10.1	3rd	5.4 General Bus Operation& Physical Memory Organisation
12th	4th	5.5 MinimumMode&Timings, 5.6 Maximum Mode&Timings,
	5th	5.7 Interrupts and Interrupt Service Routines, Interrupt Cycle, Non-Maskable Interrupt,
		Maskable Interrupt
	1st	5.8 8086 Instruction Set & Programming: Addressing Modes, Instruction Set, Assembler Directives and Operators,
	2nd	5.9 Simple Assembly language programmingusing 8086 instructions.
13th	3rd	Unit-6 Microcontroller (Architecture and Programming-8 bit) (15)
		6.1 Distinguish between Microprocessor & Microcontroller
	4th	6.2 8 bit & 16 bit microcontroller 6.3 CISC & RISC processor
	5th	6.4 Architectureof8051Microcontroller
	1st	6.4 Architectureof8051Microcontroller
	2nd	6.5 Signal Descriptionof8051Microcontrollers
14th	3rd	6.6 Memory Organisation-RAM structure, SFR
	4th	6.7 Registers,timers,interruptsof8051Microcontrollers
	5th	6.8 Addressing Modes of 8051
	1st	6.9 Simple 8051 Assembly Language Programming Arithmetic & Logic Instructions , JUMP,
		LOOP, CALL Instructions, I/O Port Programming
	2nd	6.9 Simple 8051 Assembly Language Programming Arithmetic & Logic Instructions , JUMP,
15th		LOOP, CALL Instructions, I/O Port Programming
	3rd	6.10 Interrupts, Timer & Counters
	4th	6.11 Serial Communication
	5th	6.12 Microcontroller Interrupts and Interfacing to 8255

Signature of the faculty